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Abstract: Model Parameter Estimation Experiment (MOPEX) is an international project
aimed to develop enhanced techniques for the a priori estimation of parameters in
hydrologic models and in land surface parameterization schemes of atmospheric models.
MOPEX science strategy involves three major steps: data preparation, a priori parameter
estimation methodology development, and demonstration of parameter transferability.  A
comprehensive MOPEX database has been developed that contains historical
hydrometeorological data and land surface characteristics data for many hydrologic
basins in the United States and in other countries.  This database is continuing to be
expanded to include more basins in all parts of the world.  A number of international
MOPEX workshops have been convened to bring together interested hydrologists and
land surface modelers from all over world to exchange knowledge and experience in
developing a priori parameter estimation techniques. This paper describes the results
from the second and third MOPEX workshops. The specific objective of those workshops
is to examine the state of a priori parameter estimation techniques and how they can be
potentially improved with observations from well-monitored hydrologic basins.
Participants of these MOPEX workshops were given data for 12 basins in the
Southeastern United States and were asked to carry out a series of numerical experiments
using a priori parameters as well as calibrated parameters developed for their respective
hydrologic models.  Eight different models have carried all out the required numerical
experiments and the results from those models have been assembled for analysis in this
paper.  This paper presents an overview of the MOPEX experiment design.  The
experimental results are analyzed and the important lessons from the two workshops are
discussed.  Finally, a discussion of further work and future strategy is given.



1. Introduction

A critical step in applying a hydrologic model to a watershed or a land surface

parameterization scheme (LSPS) of an atmospheric model to a specific grid element is to

estimate the coefficients or constants in the model or LSPS known as parameters.  These

parameters are inherent in all models.  While certain parameters may take on universally

accepted values (e.g., gas constant, acceleration of gravity), the values of many

parameters are not universally constant and may be highly uncertain.  In general, they

vary spatially so they are unique to each watershed or a grid point.  Some may also vary

seasonally.  Moreover, some parameters may be space-time scale dependent (Koren et al.,

1999, Finnerty et al, 1997).  How to estimate model parameters has been receiving

increasing attention from the hydrology and land surface modeling community (Franks

and Beven, 1997, Bastidas et al., 1999, Gupta et al., 1999, Duan et al., 2001, Duan et al.,

2003, Jackson, et al., 2003).

A common approach in hydrologic modeling community  to parameter estimation

is to calibrate hydrologic models to historical observations by tuning model parameters.

A plethora of model calibration techniques have been reported in the literature.  For a

detailed review of model calibration techniques, readers are referred to Duan et al. (2003)

and Duan (2003).  To conduct model calibration, a sufficient amount of historical

hydrologic data is required.  Hydrologists have the advantage of working with

watersheds, many of which are well monitored with raingauges and stream gauges.  For

ungauged basins and for LSPS applications, it is difficult to obtain adequate data needed

for model calibration.  A further complication is that LSPSs are typically applied to large



spatial scales and involve many grid elements.  To estimate model parameters in those

cases, it is necessary to assign model parameters a priori.

A priori parameter estimation procedures are available for many hydrologic

models and LSPSs. But these procedures have not been fully validated through rigorous

testing using retrospective hydrometeorological data and corresponding land surface

characteristics data.  This is partly because the necessary database needed for such testing

has not been available until recently.  Moreover, there is a gap in our understanding of the

links between model parameters and the land surface characteristics. Generally available

information about soils (e.g., texture) and vegetation (e.g., type or vegetation index) only

indirectly relates to model parameters such as hydraulic properties of soils and rooting

depths of vegetation. Also it is not clear how heterogeneity associated with spatial land

surface characteristics data affects those characteristics at the scale of a basin or a grid

cell. Consequently, there is a considerable degree of uncertainty associated with the

parameters given by existing a priori procedures.

The Project for Intercomparison of Land-surface Parameterization Schemes

(PILPS) has revealed widely discrepant simulation results by different LSPSs (see Chen

et al., 1997; Wood et al., 1998; Pitman et al., 1999; Schlosser et al., 2000; and Slater et

al., 2001).  Interestingly, the LSPSs participated in the PILPS experiments were driven by

the same meteorological forcing data and they were required to prescribe the same values

for commonly named parameters such as soil hydraulic properties and vegetation

phenology parameters.  The large scattering of model results can be partially explained

by the uncertainty in the values of the parameters used in each scheme.



Improper choice of model parameters results in poor model performance (Liston

et al, 1994; Duan et al., 1995).  It is necessary to develop enhanced a priori parameter

estimation methodologies for hydrologic models and LSPSs.  Toward this goal, a project

known as the Model Parameter Estimation Experiment (MOPEX) was initiated in 1996.

MOPEX project has been truly an international collaborative endeavor, with the

involvement of international scientists and hydrologic data assembled from different

countries.  MOPEX has the endorsement of several international organizations and

projects, including World Meteorological Organization (WMO) Commission on

Hydrology and International Association of Hydrological Sciences (IAHS) Prediction for

Ungauged Basins (PUB) Initiative (Sivapalan, 2003).  The Office of Global Programs in

the National Oceanic and Atmospheric Administration (NOAA) and the funding agencies

in different countries have provided financial support for scientists to participate in

MOPEX activities.  A series of international workshops on MOPEX have been convened

over the last few years.  The first one was held in July 1999, as a part of International

Union of Geodesy and Geophysics (IUGG) 21st General Assembly in Birmingham,

England. The second MOPEX workshop, co-sponsored by National Weather Service

Hydrology Laboratory (NWS/HL) and National Science Foundation Center for

Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) at the University of

Arizona, was held in Tucson, Arizona, in April 2002. The third MOPEX workshop was

held in Sapporo, Japan, in July 2003 as a part of the 22nd IUGG General Assembly. The

fourth MOPEX was held in Paris, France in July 2004, co-sponsored by Cemagref of

France and NWS/HL.  The fifth MOPEX workshop is scheduled in Foz do Iguaçu,

Brazil, in April 2005.



The MOPEX workshops were designed to bring together interested international

hydrologists and land surface modellers to share experience in estimation of hydrologic

model parameters.  Each workshop has a special focus, either in terms of

hydroclimatology (i.e., humid or semi-arid) or in terms of special applications (i.e., flood

forecasting).  The workshops are also designed to allow different levels of participation.

The driving science questions of these workshops are:

(1) How are the parameters of the hydrologic models related to basin

characteristics such as soils, vegetation and climate?

(2) How can model calibration enhance existing a priori parameter

estimates?

(3) What data are needed to develop enhanced a priori estimates of

model parameters of the hydrological models?

(4) Can we transfer the knowledge about the parameters of one

hydrologic model to another model?  Related to this question, can

we transfer the knowledge about the parameters of a hydrologic

model from the well-gauged basins to the ungauged basins?

(5) How should we handle the uncertainty about model parameters and

hydrologic modelling in general?

This paper concerns with the second and third MOPEX workshops. For those two

workshops, a set of numerical experiments was constructed. The MOPEX participants

were given data for 12 basins located in the Southeastern quadrant of the United States.

Numerical test results from different modeling groups were assembled for the workshops

and the analysis of the results is presented in this paper.  The paper is organized as



follows. First the MOPEX rationale and science strategy are presented. Then a discussion

is given to the objectives and numerical experiment design. The data sets assembled for

the workshop are described afterwards. A comprehensive analysis of the results is

conducted to understand the differences in the results from different models. Finally,

further work and future strategy are discussed.

2. Model Parameter Estimation Experiment Strategy

MOPEX science strategy involves three major steps (Fig. 1).  The first step is to

develop the necessary data sets.  The next step is then to use these data to develop a

priori parameter estimation methodology. .  Step three is to demonstrate that new a priori

techniques produce better model results than existing a priori techniques for basins not

used to develop the new a priori techniques.

Step two is accomplished using a three-path strategy illustrated in Fig. 1.  The

first path is to make reference runs with model parameters estimated by using existing a

priori parameter estimation procedures.  The second path is to make model runs using

calibrated or tuned values of selected model parameters.  Then, the calibrated parameters

are analyzed to improve the relationships between model parameters and basin

characteristics including climate, soils, vegetation and topographic features.  The new

relationships are then used to estimate the new a priori parameters.  The third path is to

make new model runs using the new a priori parameter estimates. The success of step

two is measured by how much improvement in model performance is achieved when the

model is operated using new a priori parameters as compared to the reference runs.



The MOPEX Project has assembled hydrometeorological data as well as land

surface characteristics data that are needed to implement its parameter estimation

strategy. Data from many basins in the United States and other parts of the world are

being assembled.  These basins cover a wide variety of climates. They are selected such

that rain-gauge density of the basins must be above the minimum established by an

empirical equation (Schaake et al., 2000). Also a minimum of 10 years of data is

preferred for all MOPEX basins.  The MOPEX basins are also free of streamflow

regulation.  A later section describes the data set used for the Tucson and Sapporo

workshops.

A key in implementing the MOPEX strategy is to develop systematic procedures

for calibration of selected model parameters and to apply these procedures to a large

number of basins in different hydroclimatic regimes.  Then, empirical relationships will

be sought between the parameters and various characteristics of soils, vegetation and

climate.  Much progress has been made in the area of model calibration (Duan et al.,

2003). Duan et al. (1992 & 1994) developed a robust optimization method known as

Shuffled Complex Evolution (SCE-UA) method for optimal estimation of model

parameters. Yapo et al. (1997) and Gupta et al. (1999) have extended Duan’s approach in

the context of multi-objective theory.  Recently there is a surge of interest toward

producing multiple sets of model parameters, as a means to account for uncertainty

related to model structure, calibration data and model parameters.  These methods use

Monte Carlo sampling techniques to produce a set of solutions, all of which are regarded

as “equifinal” (i.e., all of the solutions are equally valid).  Examples of those are

Generalized Likelihood Uncertainty Estimation (GLUE) by Beven and Binley (1992),



Markov Chain Monte Carlo (MCMC) Metropolis scheme by Kuczera and Parent (1998)

and the Shuffled Complex Evolution Method Metropolis (SCEM) scheme by Vrugt et al.

(2003).   For more on the state-of-the-art on model calibration methods, readers are

referred to Duan et al. (2003).

Numerous studies have been directed at developing improved a priori parameter

estimation procedures for hydrologic models and LSPSs.  Earlier examples of a priori

parameter estimation procedures are from the field of soil physics, in which soil hydraulic

properties (as appeared in many hydrologic models and LSPSs) are related to soil texture

classes in a tabular format (see e.g., Clapp and Hornberger, 1978, Cosby et al., 1984,

Rawls et al., 1991, Carsel and Parrish, 1988).  Many land surface modellers have directly

adopted the a priori parameter estimation schemes developed by soil physicists to assign

values to parameters in LSPSs (Dickinson et al., 1986, Sellers et al., 1986).  Duan et al.

(2001) pointed out that this practice is questionable because the tabular relationships

between soil hydraulic properties and soil texture classes are based on analysis of soil

samples tested at laboratories.  These relationships may not hold up in the real world,

especially over grid elements of several hundred to several thousand square kilometres.

For typical hydrologic models and LSPSs, it is often the case that the relationships

between many of the model parameters and land surface characteristics are not obvious.

One approach to solve this dilemma is to develop a priori relationships between land

surface characteristics and model parameters for basins where the model is appropriately

calibrated (Abdulla et al., 1996, Duan et al., 1996).  With the advent of Geographic

Information System (GIS), many more a priori parameter estimation procedures have

appeared.  These schemes are model specific and are still being evolved.  A number of



those schemes are being tested in the second and third MOPEX workshops and are part

of the analysis in this paper.

3. Design And Database Of The Second And Third MOPEX Workshops

3.1 Workshop Objectives:

The second and third MOPEX workshops focused on the second step of the

MOPEX strategy: data preparation and development of parameter estimation procedures.

The emphasis of the workshop was on validating existing a priori procedures and on

evaluating potential improvement from model calibration.  Because all hydrologic

models are formulated differently, parameter estimation procedures are model-specific.

A challenge facing hydrologic modelers is how the knowledge gained from one model

can be transferred to another model.  This is also the principal reason to convene these

MOPEX workshops.  A specific objective of these workshops is to examine the state of a

priori parameter estimation techniques and how they can be potentially improved with

observations from well-monitored hydrologic basins.  Particularly we sought to answer

the following questions:

(1) How do we define the relationships between model parameters and basin

characteristics?

(2) How can model calibration be used to refine the a priori parameters?

(3) How do we evaluate the uncertainty due to model structure, calibration data

and model parameters?

3.2 Design of MOPEX Numerical Experiment:



To answer these questions, a set of numerical experiments was set up.  Data for

12 basins located in the southeastern quadrant of the United States were prepared. The

data sets include hydrometeorological data as well as basin land surface characteristics

data. More discussion on these data sets is given in the next section. The data were

distributed to MOPEX participants via ftp and CD-ROMs.  The MOPEX participants

were asked to run two sets of runs. The first set of runs are to run their respective models

on all 12 basins using existing a priori parameters developed for their models. The

second set of runs involves model calibration for pre-selected common data periods.

After model calibration, the participants are asked to run their models using calibrated

parameters for the calibration and verification data periods. All results were collected for

analysis by the MOPEX workshop organizers.

3.3 Description of the Data Set:

3.3.1 MOPEX Data Requirements

The first step in MOPEX strategy is to assemble a large number of high quality

data sets for a wide range of Intermediate Scale Area (ISA) river basins (500 – 10,000

km2) throughout the world.  There are strict requirements for MOPEX data sets in terms

of data type, quantity and quality.  Two basic data type are hydrometeorological data and

land surface characteristics data.  MOPEX basins should be unregulated basins and cover

a variety of climate regimes.  The basic hydrometeorological data required for MOPEX

include daily precipitation, daily maximum and minimum temperature, daily streamflow

data and climatic potential evaporation data.  More desirable hydrometeorological data

include hourly surface meteorological data include precipitation, incoming long-wave

and short-wave radiation, air temperature, air humidity, atmospheric pressure, and wind



speed, etc.  The quality of precipitation data is critically important to parameter

estimation.  MOPEX has established a minimum density requirement for raingauges

based on basin size (Schaake et al., 2000).  To ensure various hydrologic events are

represented in the hydrometeorological data, MOPEX requires that the data length exceed

10 years.  Desirable data length is 20 years or more.

The basic land surface characteristics data include basin boundary, soil texture

and vegetation type data. More desirable land surface data sets include high resolution (1

km or finer) Digital Elevation Model (DEM) data, seasonal land cover/land use data such

as Normalized Deviation of Vegetation Index (NDVI), greenness fraction, snow cover

and soil moisture climatology, etc.

3.3.2 MOPEX Data for the Second and Third MOPEX Workshops

For the second and third international MOPEX workshops, hydrometeorological

data as well as basin land surface characteristics data for 12 basins in the Southeastern

quadrant of the United States were assembled.  Fig. 2 shows the location of the 12 basins.

These basins represent a wide range of different climate, as indicated by the ratios of

annual precipitation (P) and potential evapotranspiration (PE) in Fig. 3. A high value for

P/PE indicates wet climate and a low value dry climate. The climatic seasonal

precipitation and streamflow distributions are shown in Fig. 4.

The hydrometeorological data sets prepared for the workshops included hourly

mean areal precipitation, daily streamflow, climatic daily potential evapotranspiration.

The hourly precipitation data sets were developed by the NWS Hydrology Laboratory

(HL) based on hourly and daily raingauge data from the National Climate Data Center

(NCDC).  The daily streamflow data were obtained from US Geological Survey (USGS).



The climatic potential evaporation data was derived from the NOAA Freewater

Evaporation Atlas (Farnsworth et al., 1982).  Also included are basin averaged hourly

meteorolological forcing data, including precipitation, air temperature, wind speed,

surface pressure, short-wave and long-wave radiation and specific humidity.  All

meteorological forcing data except precipitation were processed from the 1/8 degree

meteorological forcing data for the conterminous US developed by the University of

Washington (UW) (Maurer et al., 2001).  The UW hourly meteorological data set is

derived from NCDC daily precipitation, daily minimum and maximum temperature and

analyzed wind speed data obtained from National Center for Environmental Predictions

(NCEP).  The historical data from different sources span over different data periods.  For

this study, a common period, 1960 to 1998, is chosen so data from all sources are

available.

The land surface characteristics data sets assembled for this study include 1 km

soil type data from the STATSGO data set (Miller and White, 1999), the 1 km vegetation

type, and 5-min greenness fraction data (Loveland et al., 1999, Hansen et al., 1999,

Gutman and Ignatov, 1998).  Fig. 5 and 6 show the vegetation type and soil type

distributions of the 12 basins. As shown in those figures, a number of different vegetation

and soil type are represented.  Other land surface data include basin boundary, elevation,

monthly surface albedo and roughness length.  Basin climatologic data such as monthly

long-term average precipitation, streamflow and potential evapotranspiration have also

been made available to MOPEX participants.

4. Results and Analysis



Eight hydrologic models and LSPSs have completed all of the required numerical

experiments as described in Section 3.2.  A few additional groups submitted partial

numerical experiment results for other models and those are not included in this analysis

due to the incompleteness of those results.  Table 1 lists the eight participating models.

Of the eights models, the first four models (SWB, SAC, GR4J and PRMS) are watershed

rainfall-runoff models, while the last three (ISBA, SWAP, and Noah models) are LSPSs.

VIC model has been used both as a watershed model and a land surface scheme in

atmospheric model.  The analysis presented below is based on the comparison of the

simulated streamflow from the 8 models and the corresponding observations at daily or

monthly time step.  We must emphasize that the purpose of the intercomparison study is

not intended as a “beauty” contest.  Instead, we seek to understand the differences

between approaches and use this understanding to develop new a priori parameter

estimation procedures.  For this reason, the model names are not spelled out in the

figures.

4.1 The simulation results using existing a priori parameters

The purpose of simulations using existing a priori parameters is to establish

benchmarks for the current a priori parameter estimation procedures used by the

participating models.  Any new a priori parameter procedures developed in the future for

those models should at least outperform the benchmarks.  It should be noted that among

the eight models under study, some models already have established a priori parameter

estimation procedures, while others have no such systematic procedures.  This

discrepancy is reflected in the results shown below.  Fig. 7 displays the comparison of the



simulated annual streamflow totals from the a priori runs and the corresponding observed

values.  The spread of simulated streamflow annual totals is quite large between the

models.  None of the models were able to generate simulated streamflow values that

match the observed values for all basins.  The maximum over-bias exceeds  400 mm/year

and the maximum under-bias is about 340mm/year.

Nash-Sutcliffe (NS) efficiency is a commonly used goodness of fit measure

between the simulated time series and observed time series.  It is expressed as:

where Q*i and Qi are the simulated and observed values at time i.Q is the average of

observed values.  A value of 1 indicates perfect fit between Q*i and Qi, while a value of <

0 implies that simulated value is worse than the long term average of the observations.

Fig. 8 shows the NS efficiency of the daily streamflow simulations by the eight models.

The NS values have been sorted from the lowest to the highest for each model.  Fig. 9

a&b show, respectively, the means and the standard deviations of the NS values.  These

figures reveal some interesting findings.  Even though some models have some of the

higher ranked NS values for most basins, they do not rank high for all basins.  On the

other hand, some models (e.g., Model E) are shown to be consistent in all basins.  This

consistency is reflected in the low standard deviations for those models.  In general, the

models with the low average NS values also have the high standard deviations.  It should

also be noted that some models perform worse than long-term average for some basins,



indicating a definitive need to improve a priori parameter estimates under those

circumstances.

Fig. 10 and 11 show the same information for all models as in Fig. 8 and 9, but

evaluated at monthly time step.  The NS statistics for all models at monthly time step

have improved over those at daily time step.  Still for a couple of models, the model

simulations produce worse statistics than the long-term average of observations for one

basin.  The fact that a model does well for most basins, but poorly for only a few, tells us

that the modeler should probably focus attention on the basins with poor results when

looking for enhanced a priori parameter estimates.

4.2 The Simulation Results Using Calibrated Parameters

There are several objectives in this exercise.  First, we hope to quantify the

potential improvement in model performance when the models are calibrated using

observations, as compared to those using a priori parameters.  Second, we want to make

sure that there is consistency in streamflow simulations between calibration and

validation data periods when the calibrated parameters are used.  The ultimate objective

of this exercise is to use the calibrated parameters to establish new a priori parameter

estimates.

All model groups were asked to calibrate and validate their models for all 12

basins using historical hydrologic data.  Originally, it was a split sample approach was to

be used.  Years 1980-1990 were to be used for calibration, while the first 19 years (1960-

1979) were to be used for validation.  Because different groups used different 19-year

periods for calibration, it is not possible to make a direct comparison of all 8 models

using the split-sample approach.  But the differences in calibrated model performance



between the different 19-year periods were much smaller than the differences in model

performance between the a priori and calibrated  runs, it seemed the best way to achieve

the study objectives was to use the entire 1960-1998 period to evaluate model results for

both the a priori and calibrated runs.

Fig. 12 shows the simulated annual streamflow totals using calibrated parameters

versus the observed annual streamflow totals.  Compared to Fig. 7, the scatter around the

diagonal line is much smaller, indicating the agreement between the simulations using

calibrated parameters and the observations is better than that using a priori parameters.

Fig. 13 displays the sorted NS values for all models for the calibration period 1980-1998,

while Fig. 14 shows the average NS values and standard deviations at daily time step.

All of those figures confirm that the NS values are improved for almost all models

compared to the a priori results.  Except for one model in one basin, all NS values are

positive when calibrated parameters are used.

Fig. 15 and 16 show the same information as in Fig. 12 and 13 for all models, but

the NS values are computed using monthly aggregated values.  Note again that the two

models with low average NS values also have high standard deviations.

4.3 Calibration versus a priori results

Figures 17a&b show the scatter plots of daily and monthly NS values of the entire

data period where a priori and calibrated parameters are used.  Both figures show that

almost all of the points are on the left side the diagonal line, indicating improvement

resulting from the calibration exercise.  The improvement is more apparent when

examining monthly NS statistics.  There are certain cases when the NS values from the

calibration runs do not improve those from the a priori runs.  This is due to the fact that



different modeling groups performed model calibration using different approaches.

Particularly, one group did not tune its model parameter to fit observed streamflow data

during calibration.

4.4 Joint correlation between simulated streamflow from multiple models and

observations

It is recognized that each of the models participating in this study is an imperfect

representation of the hydrologic process that occur in the real world.  It seemed

interesting to ask how much total information about each basin is contained in the set of

all models.  Accordingly, the simulated streamflow time series from all 8 models are used

together as independent variables to construct a multiple regression model to predict the

observed streamflow.  The joint correlation coefficient from this regression aanlysis is a

measure of the total information content of all of the models, jointly.  By comparing the

joint correlation coefficient from the regression analysis with the simple correlation

coefficients for each model we can get an idea not only of the total information content

but also which models contribute most of the information.   Fig. 18 shows the scatter plot

of the joint correlation coefficients and individual correlation coefficients at daily time

step.  All of the points lie on the left of the diagonal line, which delineates the limiting

value of the regression coefficient for any individual model.  The relative position of

points along the abcissa indicates the contribution of individual models to the joint

correlation.  In Fig. 18a, it is clear that Model B contributes most to the joint correlation

because most of the points associated with this model are closest to the diagonal line.  In

Fig. 18b, a number of models make significant contribution to the joint correlation.



These figures point to the potential that multi-model approach is a plausible approach to

obtain improved prediction.

5. Lessons, Conclusions and Future Directions

We have presented a summary and analysis of the numerical experiment results of

eight different models submitted to the second and third workshops.  A number of lessons

can be drawn from these results.  First, the results confirm our earlier statements that the

existing a priori parameter estimation procedures are problematic and must be improved.

Second, calibration results clearly demonstrate the huge potential for

improvement in a priori parameter estimation.  Third, different models seem to represent

hydrologic processes differently and all of them are imperfect.  This suggests it may be

possible to improve some of the models.  It also suggests that improved prediction may

be possible through an ensemble of different models or, possibly, an ensemble of a given

model using different parameter sets.

Much research needs to be done to understand how model parameters are related

to basin land surface characteristics. Further, how to use the calibrated results for

improve a priori parameters is still not clear and this issue needs to be looked at.

Different modeling groups can learn from each other because many model parameters

have similar physical interpretations and should have similarity in space-time patterns.

One issue that has not been examined in the workshops is the parameter

transferability issue. This issue is very important for Predictions for Ungaged Basins

(PUBs) and for application in land surface parameterization schemes. To study

transferability issue, data from a wide range of climatic conditions should be used.  The



MOPEX project has assembled data from many different countries. These data should be

used to test enhanced a priori parameters.

One of the driving forces behind the progress in parameter estimation research is

the increasing array of data sources, including satellite and other advanced observational

technologies. With the new sources of data, it is important to investigate the ways to

maximize the use of high resolution spatio-temperal information. Meanwhile the issue of

uncertainty attributed to data errors should be addressed.

Any improvement in parameter estimation procedures must be tied to how we

represent the physical processes. As our knowledge of the physical processes advance,

more complicated distributed hydrologic models emerge. This will bring more challenge

to us in terms of parameter estimation and model calibration. Much of the work cited

above have already or are being carried out and reported by MOPEX project participants.

With a true collaborative spirit by international scientists, enhanced a priori parameter

estimation should be available to us. This in turn should result in improved skill in

hydrologic predictions.

nijhuis2
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Table 1. Participating models and modeling agencies

Model Names Model Agencies

Simple Water Balance (SWB) NWS

Sacramento (SAC) NWS

GR4J Cemagref, France

PRMS USGS, USA

VIC-3L U.

ISBA Meteor-France

SWAP Russian Academy of Sciences

Noah LSM NWS, USA




